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ABSTRACT
Purpose To clarify relationships among various types of target-
mediated disposition (TMD) models including the Michaelis-
Menten, quasi-steady-state (Qss), and rapid binding models
and propose measures for the closeness of some models as
approximations to the general TMD model (Mager and Jusko, J
Pharmacokinet Pharmacodyn 28(6):507–532, 2001).
Methods Based on the classic singular perturbation theory by
selecting appropriate scales of time, we derive requirements
with which the Michaelis-Menten and Qss models are suitable
approximations. Under the Qss assumption we show that
other simplifications of the general TMD model can be similarly
obtained as the Michaelis-Menten and Qss models. We
compare these models by simulations using known application
examples.
Results The Michaelis-Menten and Qss models are direct
simplifications of the general TMD model and, moreover,
suitable approximations if certain specific requirements on the
parameters are met.
Conclusions As a first attempt to quantify the closeness of some
simplifications to the general TMD model, our work should
provide a more rigorous basis for the theoretical and practical
research of TMD models, which are important for investigating
the pharmacokinetic-pharmacodynamic relationships of many
biological compounds.

KEY WORDS Michaelis-Menten . quasi-steady state . rapid
binding . target-mediated disposition

INTRODUCTION

Target-mediated disposition (TMD) of a drug refers to the
phenomenon that interaction of the drug with its in vivo

target (ligand or receptor) significantly influences the drug
disposition. A common case of TMD occurs in protein
compounds that, upon binding to their cell-surface recep-
tors, undergo endocytosis and subsequent lysosomal degra-
dation. This has been suggested as a mechanism that
contributes to systemic clearance for a list of recombinant
human protein products including erythropoietin, granulo-
cyte colony stimulating factor, thrombopoietin, interferon-
β1a, and vascular endothelial growth factor (2–6). TMD
also occurs with many therapeutic monoclonal antibodies
(mAbs) that, by design, bind to their pharmacological
targets with high affinity and specificity. When the amount
or capacity of the accessible target, relative to the drug, is
limited, TMD typically manifests nonlinear pharmacoki-
netics. Dirks and Meibohm recently reviewed population
pharmacokinetics of 22 therapeutic mAbs of IgG isotypes,
and among them 10 exhibited nonlinear pharmacokinetics
because of TMD (7). The actual number is probably
higher, since the type of nonlinear pharmacokinetic
disposition, as a signature behavior of TMD, is not always
observable in experimental data. The reason is that clinical
doses, at which drugs are studied, often saturate the target-
mediated elimination pathway and thereby mask the
nonlinear pharmacokinetics.

When the non-compartmental analysis (NCA) method is
used to analyze concentration data alone for drugs with
TMD, the type of nonlinear pharmacokinetics is observed
commonly as dose-dependence. The total and distribution-
al clearances and the steady-state volume of distribution
may appear to decrease with increasing doses or with
chronic administration of doses (1,2). Because of the
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assumption of linear disposition, the NCA method is
sometimes inappropriate for pharmacokinetic analysis of
drugs with TMD, except perhaps for initial exploration to
uncover or confirm TMD. In general, studying pharmacoki-
netics without considering its target may lead to confusing
results. Studying pharmacokinetics with consideration of both
drug and target gives better insight into the mechanism of the
drug, thus more meaningful for the investigation of
pharmacokinetic-pharmacodynamic relationship.

The basic concept of TMD and its related pharmacokinetic
characteristics were first introduced by Levy (8). Various
models were developed for drugs exhibiting TMD behavior
(9,10), and the most popular one has an elimination
component taking the form of a Michaelis-Menten function
of the drug concentration (see references in (7,11)). This
simple nonlinear function represents the complex saturable
process of drug associating with and dissociating from the
target and, in parallel, the degradation of the drug-target
complex, e.g., following receptor-mediated endocytosis. The
general framework of the TMD model was, however, first
established by Mager and Jusko (1), who explicitly considered
the drug-target binding as part of the model and showed
examples of fitting simplified versions of the model to clinical
data for compounds such as bosentan and interferon-β1a.

The concentrations of the target or the drug-target
complex are routinely unavailable and, if available, may not
be sufficient to describe the initial binding process. In such
cases, the parameters of the TMD model in its most general
form are not always identifiable. Some simplifications are
needed. The rapid binding (or quasi-equilibrium) (12) and
quasi-steady-state (Qss) (13) models with fewer parameters
have since been proposed as approximations, under the
assumption that initial process of drug binding to the target
occurs relatively faster than the usual non-specific drug
elimination and transit processes among the compartments.
In addition to the tendency towards model over-
parameterization caused by limitation of available data for
model fitting, there are other difficulties in applying TMD
models. The high degree of nonlinearity naturally makes the
theory of TMD model less tractable and modeling practice
numerically more complex. Model convergence and param-
eter estimation are sensitive to initial values needed in
running nonlinear model-fitting algorithms. The complexity
is multiplied when taking a population approach with mixed
effects to identify sources of variability in pharmacokinetics,
which could be large because of large variability in target.

Over the years, great progress has been made in learning
and applying TMDmodels (2,11–14). A detailed summary of
published work on applying TMD models to study biologics
can be found in the review paper (11) by Gibiansky and
Gibiansky. There the authors offered their expert opinions
on TMD models and reasons for over-parameterization, and

gave much useful insight and guidance in fitting such models.
Despite the signficant advance in understanding TMD
models, important open questions remain. The relationships
between the general TMD model (1) and its simplifications
(e.g., rapid binding and Qss) is not entirely clear. For
example, a basic question of whether a general TMD model
taking certain sets of parameter values ever becomes a
simplified model has not been answered. The converse
question is not easy to answer but perhaps more interesting:
under what conditions does a simplified model approximate
the general TMD model with reasonable accuracy? In that
context, the consideration of reasonable accuracy is itself a
difficult issue. Some of the basic properties of TMD models,
although intuitively obvious, have not been explicitly
described or proven. In deriving relationships among TMD
models early work either was done heuristically with
comparisons based more or less on simulations, thus validity
dependent on simulation conditions, or lacked adequate
mathematical rigor when deduced. There were models
proposed and applied that resembled known simplifications
to the general TMD model but appeared still different (e.g.,
(9,10,15)), which added to the difficulties.

This work is an attempt to organize various types of TMD
models including the Michaelis-Menten, Qss, and rapid
binding models and clarify the relationships among them.
We show that the Michaelis-Menten and Qss models are
examples of direct simplifications of the general TMD model
and, moreover, suitable approximations if certain require-
ments on the parameters are met, and we specify these
requirements. The argument of suitable approximation is
based on the classic singular perturbation theory (16–18) by
selecting appropriate scales of time. Other simplifications of
the general TMD model can be obtained in ways similar to
the Michaelis-Menten and Qss models. Simulations based on
known application examples are done for visual comparison
of these models. We hope that our work will provide a more
rigorous basis for the theoretical and practical research of
TMD models, which have become important tools for
investigating the pharmacokinetic-pharmacodynamic rela-
tionships of many biological compounds, and to stimulate
more discovery and development in this area. Although
differential equations are presented throughout this work, the
only mathematics used is algebra and a minimum of calculus
(e.g., transformation of variables). Studying basic properties of
the TMD models requires a more analytical, rather than
algebraic, approach and will not be presented here.

METHODS

Our model scheme and notations are based on (1,11,13,19)
and shown in Fig. 1. The disposition of many protein drugs
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can be described with a two-compartment model including
a central compartment with volume V, representing intra-
vascular space, of concentration C and an extra-vascular
peripheral compartment, representing tissue space, of
amount AT for the free drug. The drug binding to the free
target of concentration R is assumed to occur only in the
central compartment to form a complex of concentration
M. In general, a depot compartment of amount Ad is also
included to represent usually subcutaneous or intramuscular
administration sites for protein drugs.

The model assumes that free drug into the central
compartment could either be absorbed from the depot
with an available dose amount D1 and a rate constant
ka, or directly entered as an intravenous (i.v.) bolus
injection of a dose amount D2, or an i.v. infusion,
represented by an input function In(t)≥0 on an interval
[0, τ0] of time t with 0< τ0<∞ and In(t)=0 if t>τ0. From
the central compartment, the free drug can reversibly
distribute to the peripheral compartment with rate
constants kpt and ktp or irreversibly eliminated with a
rate constant ke. The above rate constants are all from
first-order processes. When there is no external drug
input, the endogenous free target is synthesized in a zero-
order process with a rate constant ksyn and degraded in a
first-order process with a rate constant kdeg; its steady-
state concentration is thus ksyn/kdeg. After administration,
the free drug binds to the free target in a second-order
process with a rate constant kon, and the complex may
dissociate with a rate constant koff and degrade (e.g., after
internalization) with a rate constant kmet as first-order
processes. The drug elimination pathway via binding to
the target and subsequent degradation of the complex
could be saturated, when the target amount or capacity is
limited. Below are the corresponding system of ordinary
differential equations (ODEs) with their initial conditions.
For notational convenience, we shall replace the drug
amounts and input rate by their quotients with a divisor

equal to the volume V of the central compartment:
Bd ¼ Ad=V ; BT ¼ AT =V ; IðtÞ ¼ In tð Þ=V ; B0 ¼ D1=V ; and
C0 ¼ D2=V . Henceforward variables on the left-hand side
of all differential equations will be some concentration terms,
expressed in molar units (except the scaled equations in
“Approximations”, which are dimensionless).

dBd

dt
¼ �kaBd ; Bdð0Þ ¼ B0 ð1Þ

dC

dt
¼ I ðtÞ þ kaBd � konR � C þ koffM � ðke þ kptÞC

þktpBT ; Cð0Þ ¼ C0

ð2Þ

dBT

dt
¼ kptC � ktpBT ; BT ð0Þ ¼ 0 ð3Þ

dR

dt
¼ ksyn � kdegR� konR � C þ koffM ; Rð0Þ ¼ ksyn=kdeg

ð4Þ

dM

dt
¼ konR � C � ðkoff þ kmetÞM : Mð0Þ ¼ 0 ð5Þ

The solution to the above ODE system defines the general
TMD model. It follows from the theory of ordinary
differential equation that a unique solution to Eqs. 1 to 5
exists in [0, t0) for some t0>0, and is analytic with obviously
suitable assumptions on the input function I(t). Thus, the
general TMD model is well-behaved near time 0. It can
also be shown that the TMD model, as a solution to the
above ODE system, is actually defined and continuous on
[0, ∞) and analytic in (τ0, ∞), where τ0 is defined so that for
t > τ0 the input function In(t)=0. For simplicity, we shall
restrict our discussion to the case of direct drug input into
the central compartment from either an i.v. bolus injection
or an i.v. infusion and, if a depot compartment is included,

Fig. 1 General target-mediated
disposition model. Adapted from
Mager and Jusko (1). Symbols
are defined in “Methods.”
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substitute IðtÞ by I ðtÞ þ kaBd ¼ IðtÞ þ kaB0e
�k a t . Thus, the

equation on Bd is eliminated, and the term kaBd in (2) is
removed. Furthermore, to avoid trivial cases of the model
we assume that

& kon, kmet + koff, kmet + ke>0;
& kpt>0 if and only if ktp>0; and
& if ksyn and kdeg are present in the model then ksyn, kdeg>0.

Variations to the above model exist. It has been suggested
that a general TMD model with drug-target binding in the
peripheral compartment could be more relevant to the
mechanism, since the disease-related target sites (e.g., epider-
mal growth factor receptors overexpressed on tumor cells)
often reside in tissues (20,21). Nevertheless, many conclusions
drawn in this work could be easily extended.

In “Simplifications” we summarize various simplifica-
tions of the general TMD model including those that have
not been commonly used. We shall omit the peripheral
compartment and consider only a simplified ODE system,
since all conclusions on model simplification hold after
necessary changes. Thus, the equation on BT is also
eliminated without loss of generality. The simplified ODE
system consists of Eqs. 4 and 5 and the equation below,
which replaces Eq. 2.

dC

dt
¼ I ðtÞ � konR � C þ koffM � keC ; Cð0Þ ¼ C0 ð6Þ

In “Approximations” the scaling method based on singular
perturbation theory is applied to show that in some
simplified cases the Michaelis-Menten and Qss models are
appropriate approximations of the general TMD model if,
as requirements, certain expressions of model parameters
(called ε) are close to 0.

As an example of the general TMDmodel defined in Eqs. 1
to 5, concentration-time profiles of interferon-β1a, a recom-
binant protein product for treating multiple sclerosis, are
plotted at a single i.v. bolus dose of 6 mIU (Fig. 2). The model
used is the pharmacokinetic part of an integrated model
relating interferon-β1a to neopterin concentrations, developed
by Mager and Jusko (5) (see also (1)). In the model, the total
target (Rtot = R + M) was assumed to be constant, and the
elimination rate constant ke of free interferon-β1a was fixed to
0. Table I in (5) contains all parameters used in simulation:
koff=0.111, kpt=2.18, ktp=0.0928, kmet=0.707 h−1;
kon=8.71 h−1nM−1; Rtot=1.371 nM; and V=3.61 L. For
reference, profiles from the Michaelis-Menten, Qss, and
rapid binding models are also displayed. The ε described
above is 4.07 for the Michaelis-Menten model, compared
with 0.15 for the Qss model. Overall, the approximation
with the Michaelis-Menten model seems poor. For the free
target and complex, both rapid binding and Qss models
are reasonable approximations with expected under-
prediction of the free drug at initial time (not visible from
the figure).

Fig. 2 Predicted interferon-β1a
time-concentration profiles. Black
solid line: general TMD model; blue
long-dashed line: Qss model; green
short-dashed line: rapid binding
model; and purple dot and short-
dashed line: Michaelis-Menten
model. Parameter values from
Mager and Jusko (5) and provided
in “Methods.”

TMD Model Considerations: Simplifications and Approximations 869



All plots in this work were generated using R software
(22), and concentration-time profiles of nonlinear models
were simulated using the ordinary differential equation
solver package (23).

RESULTS

Simplifications

The system of Eqs. 4 to 6 that defines the general TMD
model can be expressed in other equivalent forms using the
identities

Ctot ¼ C þM and Rtot ¼ RþM ; ð7Þ
where Ctot and Rtot are, respectively, the total drug and
target concentrations. The sum of (5) with (6) and (4) gives

dCtot

dt
¼ I ðtÞ � kmetCtot � ðke � kmetÞC ; Ctotð0Þ ¼ C0 ð8Þ

dRtot

dt
¼ ksyn � kdegRtot � ðkmet � kdegÞðCtot � CÞ: Rtotð0Þ ¼ ksyn=kdeg

ð9Þ
When the identities in (7) are considered, (8) replacing (6)
and/or (9) replacing (4) yield four equivalent ODE systems
with identical solutions.

Concentration data could be free or total, and could
come from any or a combination of the substances of drug,
target, and complex. So far only a few studies have
collected rich data from adequate number of substances
that enable the application of a general TMD model
without any simplifications (see (24) for such an example).
In practice, data may not be all available perhaps because
of assay constraints; if available they may be too sparsely
sampled or from too narrow dosage groups to be fully
informative (11). The general TMD model used to fit such
data could be over-parameterized and unusable. In these
cases, any of the equivalent ODE systems defining the
general TMD model may be simplified and then used for
model fitting. The simplification can be made by modifying
or deriving some differential or algebraic equations with
assumptions such as rapid binding and quasi-steady state.
However, a more direct simplification is to assume constant
Rtot (1), which has been successfully applied (5,6,25). The
assumption holds when the degradation rates of the
complex (kmet) and free target (kdeg) are the same and in
reality believed to be similar. The assumption is also
convenient if data on the total target are sparse or
unavailable, but the amount is considered to be unaltered
with the presence of the drug. Under the assumption,

Eqs. 5 and 6 with R replaced by Rtot − M, where Rtot is
treated as a parameter, define a simplified version to the
general TMD model:

dC

dt
¼ I ðtÞ � konðRtot �MÞC þ koffM � keC ; Cð0Þ ¼ C0

ð10Þ

dM

dt
¼ konðRtot �MÞC � ðkoff þ kmetÞM : Mð0Þ ¼ 0

ð11Þ
At times this simplified model is still not parsimonious,
which leads to restricting parameters of V, koff, kdeg, or ke to
literature values or zeros in model fitting (see (1,4) for
example). Other simplifications of the general TMD model
such as the Michaelis-Menten, Qss, and rapid binding
models are needed, if the assumption of constant Rtot is
invalid. Setting Rtot to constant is, however, an independent
way of simplification and can be attempted for all models.

In “Michaelis-Menten Model” and “Quasi-Steady-State
Model”, we show that the general TMD model defined by
(6) (and, respectively, (8)), (9), and (5) leads to the Michaelis-
Menten (and, respectively, Qss) model as a simplification
under the quasi-steady-state assumption. In “Rapid
Binding Model”, we discuss the rapid binding model. In
“Others”, we show some other simplifications including
the one derived from the equivalent system (6) (or (8)), (4),
and (5).

Michaelis-Menten Model

One way of simplifying the general TMD model defined by
Eqs. 5, 6 and 9 is to replace (5) with an algebraic equation
called the quasi-steady-state assumption, obtained by
setting the right-hand side of (5) to zero (13):

konR � C � ðkoff þ kmetÞM ¼ 0 or R � C � KmM ¼ 0; ð12Þ
where Km ¼ koff þ kmetð Þ=kon is the Michaelis-Menten con-
stant (called the steady-state constant Kss in (13)). This idea
came from the classical theory of quasi-steady-state ap-
proximation to the biochemical enzymatic equations, a
subject that has been extensively studied for close to a
century. At steady state the Qss assumption should be
naturally satisfied for some endogenous substances and is
thus an identity. With externally administered protein
drugs, it may hold approximately for drug-target complexes
after initial binding period.

Equation 12 is equivalent to either expression below of
the complex M or free target R:

M ¼ RtotC

Km þ C
and R ¼ KmRtot

Km þ C
: ð13Þ
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Simplifying (6) and (9) with the equation for the complex in
(13) gives:

dC

dt
¼ I ðtÞ � kmetRtot

Km þ C
C � keC ; Cð0Þ ¼ C0 ð14Þ

dRtot

dt
¼ ksyn � kdegRtot � ðkmet � kdegÞC

Km þ C
Rtot: Rtotð0Þ ¼ ksyn=kdeg

ð15Þ
The model defined by (14) and (15) is called the Michaelis-
Menten model and was originally presented in (13). With
no peripheral compartments it has five unknown parame-
ters kmet, Km, ke, ksyn, and kdeg, one fewer than the general
TMD model since kon and koff are replaced with the
Michaelis-Menten constant Km. If kmet=0, the model for C
simplifies further to a trivial linear model as an approxi-
mation. The complex, total drug, and free target concen-
trations, if needed, can be obtained using (7) and (13). Note
that M (0)>0, as a result of making the Qss assumption;
thus, over-prediction of the complex is expected at initial
time. It follows from (15) that the total target Rtot(t) as a
function of time t exceeds baseline Rtot(0)=ksyn/kdeg for t>0
if and only if kmet < kdeg. When kmet alone is varied, the
maximum total target concentration is the greatest when
kmet=0.

If Rtot is constant (kmet = kdeg), Eqs. 14 and 15 reduce to
the more familiar Michaelis-Menten model involving only
the free drug C:

dC

dt
¼ I ðtÞ � Vmax

Km þ C
C � keC ; Cð0Þ ¼ C0 ð16Þ

where Vmax = kmetRtot. However, we shall still call the
solution to Eqs. 14 and 15 with the total target the
Michaelis-Menten model, which in the current setup is a
direct simplification of the general TMD model. The model
in Eq. 16 can result alternatively from assuming constant
Rtot first and then directly simplifying (10) and (11) under
the Qss assumption. This further simplified model has three
parameters including Vmax that replaces kmet, kdeg(= kmet),
and ksyn. In the case that a bolus injection is the only free
drug input into the central compartment (C0>0 and I(t)=0),
the free drug C defined by the Michaelis-Menten model is
naturally a so-called total solution in the theory of singular
perturbation (i.e., as an approximation over the entire
interval t≥0 under the Qss assumption). Moreover, the
differential equation for the Michaelis-Menten model can be
transformed to an equivalent transcendental equation
without derivatives. The free drug C as a solution is closely
related to a special function in mathematics. A total solution
of the complex M can be constructed also to correct the
initial over-estimation resulted from the Qss assumption and,

thus, provide a better approximation (see Appendix for more
details of the above).

One of the first examples of the Michaelis-Menten model
was an application in a psoriatic patient study (10), where
Bauer et al. conducted a population pharmacokinetic-
pharmacodynamic analysis of efalizumab, a humanized anti-
CD11a IgG1 mAb, with a model (Model B in (10)) that was a
two-compartment version of the above Michaelis-Menten
model. The only difference is that (15) was written as the
percent of baseline target (CD11a).

Quasi-Steady-State Model

The quasi-steady-state assumption in Eq. 12 was first
adopted in (13) to derive the quasi-steady-state model.
Consider the general TMD model defined by (8) (instead of
(6) in “Michaelis-Menten Model”), (9), and (5), and replace
(5) with the Qss assumption (12). The free drug C can now
be solved in terms of Ctot and Rtot using (7):

C ¼ 0:5 Ctot � Rtot � Km þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ctot � Rtot � Kmð Þ2 þ 4KmCtot

q� �
:

ð17Þ

The combined differential and algebraic Eqs. 8, 9, and 17
for the variables Ctot, Rtot, and C define a solution that is the
quasi-steady-state model. After the solution is obtained,
concentrations of the free target and complex can be
derived using equations in (13). The derivative dC/dt of the
free drug can be related to Ctot, Rtot, and their derivatives
using (17) or, to have a less cumbersome form, using (7) and
(13) (11,12):

dCtot

dt
¼ dC

dt
þ KmRtot

ðKm þ CÞ2
dC

dt
þ C

Km þ C

dRtot

dt
: ð18Þ

As in the case of the Michaelis-Menten model, the Qss
assumption leads to poor prediction at initial binding time.
Since C(0)<C0 and M(0)>0, both free drug and complex
are affected, unlike the case of the Michaelis-Menten
model.

The Qss model has the same set of parameters as the
Michaelis-Menten model, one fewer than the general TMD
model. If Rtot is constant, a further simplification of the Qss
model can be made as before. The equation for Rtot is
removed, and the solution to Eqs. 8 and 17 with Rtot taken
as a parameter replacing ksyn and kdeg(= kmet) is again called
the Qss model. Applications of this model include studies of
pharmacokinetics for an anti-IL4-receptor mAb in healthy
volunteers and asthmatic subjects (26), and for denosumab,
an anti-RANK ligand mAb in advanced cancer patients
with solid tumors for skeletal-related events (27).
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If Rtot is constant, then the last term of the right-hand
side of (18) is zero, and the derivative of the free drug
concentration C becomes

dC

dt
¼ IðtÞ � kmetRtot

KmþC
C � keC

1þ KmRtot

ðKmþCÞ2
: ð19Þ

This equation gives a relationship of the free drug between
the Michaelis-Menten and Qss models under the assumptions
of Qss and constant Rtot (see “Michaelis-Menten Model”) and
has been attributed to Wagner (11,12).

Rapid Binding Model

Mager and Krzyzanski were the first to see the need for
simplifying the general TMD model and proposed the
rapid binding (or quasi-equilibrium) model under the rapid
binding assumption (12):

konR � C � koffM ¼ 0 or R � C � KDM ¼ 0;

where KD = koff/kon is often compared with the dissociation
constant measured in vitro for the affinity between the drug
and target. Using (7), one can express C in terms of Ctot and
Rtot, the same as in Eq. 17 except that KD now replaces Km.
With the new algebraic expression of C, Eqs. 8 and 9 define
the rapid binding model. All subsequent reasoning and
derivation in “Quasi-Steady-State Model” including the
further simplification by assuming constant Rtot hold. In
particular, the Wagner Eq. 19 that relates the derivatives of
the free and total drug concentrations is obtained with KD
replacing the Michaelis-Menten constant Km. Thus, a
Michaelis-Menten model as (16) with KD replacing Km
again follows and approximates the rapid binding model

(12,19) well, if KDRtot= KD þ Cð Þ2 � 1. Yan et al. showed
further by simulation that Rtot does not have to be constant
for this Michaelis-Menten model to be a good approximation
for the free drug C (19).

The rapid binding model has been applied to a list of
drug products (2,3,12,25) including denosumab in multiple
myeloma patients for bone disorders, and the Qss model
was also used to study denosumab in a different disease
population (27). Simulation has shown that neither is
always a better approximation. Because the only difference
between the rapid binding and Qss models is the parameter
difference of KD and Km, they are indistinguishable for
purposes of model fitting. The parameter KD was fixed to
the in vitro dissociation constant in some applications (e.g.,
(25)) or, if estimated, compared with it as a model-fitting
diagnostic or indicator for the model resemblance to the
underlying mechanism. Note that

Km ¼ koff þ kmet

kon
¼ KD þ kmet

kon
� KD; ð20Þ

and that kmet is independently estimated in both rapid
binding and Qss models. If kmet is much smaller than
koff (kmet ≪ koff), then Km ≃ KD, and the two models are
indeed similar; otherwise a question of interpretation needs
to be asked after fitting either model: is the fitted parameter
KD in some applications of the rapid binding model actually
Km (and the converse)? If Qss approximation is more
appropriate, the parameter Km estimated in vivo is probably
greater than the dissociation constant measured in vitro.
Equation 20 gives a reason, even if other factors in the body
system are not considered. It has been indeed our
experience of compounds that most of them have markedly
greater Km from fitting TMD models than the in vitro

dissociation constant, consistent with the review comments
in (11). Consequently, the closeness of in vivo model-derived
KD or Km with in vitro dissociation constant should not
always be a requirement for model adequacy. The same
caution has to be taken for the Michaelis-Menten models of
either one- or two-compartments such as defined in Eq. 16 of
“Michaelis-Menten Model” and derived from the Wagner
Eq. 19 with KD replacing Km as the Michaelis-Menten
constant (19).

The equations for the total, instead of free, drug and
target (Ctot and Rtot) have to be used for the rapid binding
simplification, unlike the cases for the Qss assumption. No
other equivalent ODE systems defining the general TMD
model seem to lead to nontrivial simplifications under the
rapid binding assumption. Indeed, when applied to
simplifying the ODE system for the free drug with Eq. 6,
the assumption gives a solution that is the usual linear
model for the free drug C, independent of the target,
similar to the case of setting kmet=0 in “Michaelis-Menten
Model.” On the other hand, the assumption applied to
Eq. 4 implies that the free target R as the solution is
constant, which itself invalidates the rapid binding
assumption.

The pharmacokinetic-pharmacodynamic relationship
of an anti-CD4 mAb TRX1 was studied by Ng, et al.
(24). A single 2-hour i.v. infusion of TRX1 at 1, 5, and
10 mg/kg was given to nine healthy subjects. Rich
concentration data of TRX1, total and free CD4 were
collected for the analysis. Although the general TMD
model fit the data quite well, simulation shows that the
typical concentration-time profiles of all three simplified
models were close to those of the general TMD model
(Fig. 3), even for the lowest dose at which differences
should be the most discernible. In particular, concentra-
tion profiles of the general TMD and Qss models are
inseparable most of the time. This indicates that all models
should provide good fit to the data. In this case, since
kmet/koff (=0.27) is small relative to 1, and TRX1
concentration is large relative to the target, the rapid
binding and Qss models are expected to be similar.
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Simulation studies in (19) showed that the Michaelis-
Menten model with KD as the Michaelis-Menten constant
should also fit the data reasonably well.

Interferon-β1a described in “Methods” is an example that
the rapid binding and Qss models approximate the general
TMD model fairly well for the free dug and the complex,
but the approximation from the Michaelis-Menten model is
poor (Fig. 2).

Others

The Qss assumption can be exploited in the other two
equivalent ODE systems (Eqs. 4 to 6 and Eqs. 4, 5 and 8)
that define the general TMD model with similar
approaches to “Michaelis-Menten Model” and “Quasi-
Steady-State Model.” Thus, a third simplification consists
of the two equations below for the free drug and target,
replacing Eqs. 4 and 6:

dC

dt
¼ I ðtÞ � kmet

Km
R � C � keC ; Cð0Þ ¼ C0 ð21Þ

dR

dt
¼ ksyn � kdegR� kmet

km
R � C ; Rð0Þ ¼ ksyn=kdeg ð22Þ

and the total drug and target concentration, if needed, can
be computed using the formulas:

Ctot ¼ 1þ R

Km

� �
C and Rtot ¼ 1þ C

Km

� �
R:

Obviously both Ctot and Rtot are over-predicted at initial
time. The model combines the drug-target association term
konR·C with the dissociation term koffM, which results in a
single second-order drug-target association term kmetR·C/Km
to form the complex. Namely, irreversible binding is the
consequence of the simplification. Thus, kmet/Km ≤ kon, as
expected, and equality holds if and only if koff=0 (i.e., a true
irreversible binding). Different from the Michaelis-Menten
and Qss models, the above simplification has two parameters
fewer than the general TMD model since kmet and Km are
not independently identifiable.

Jonsson et al. conducted a population study of a
recombinant glycoprotein, antagonistic of the target
CD11b, in healthy volunteers and stroke patients (15).
Pharmacokinetic samples, neutrophil counts, and numbers
of total and free CD11b receptors per neutrophils were
collected and used in the study. The free drug in their
model was assumed to be eliminated by linear and
nonlinear pathways. The nonlinear elimination pathway
had two terms: a Michaelis-Menten term, presumably
mediated by CD11b receptors that were not on neutrophils,

Fig. 3 Predicted TRX1 time-
concentration profiles after 1-mg
2-hour i.v. infusion. Black solid line:
general TMD model; blue long-
dashed line: Qss model; green
short-dashed line: rapid binding
model; and purple dot and short-
dashed line: Michaelis-Menten
model. Parameter values from
Ng et al. (24).
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and another term that was of the above form kmetR·C/Km
with the free drug concentration C and the time-dependent
free CD11b receptors R on neutrophils.

Finally, the last of the four ODE systems of the total
drug and free target that simplifies the general TMD model
based on the Qss assumption is presented below.

dCtot

dt
¼ I ðtÞ � kmetCtot � ðke � kmetÞKm

Km þ R
Ctot; Ctotð0Þ ¼ C0

ð23Þ

dR

dt
¼ ksyn � kdegR� kmetCtot

Km þ R
R: Rð0Þ ¼ ksyn=kdeg ð24Þ

The model has the same set of parameters as the
Michaelis-Menten and Qss models. From the Qss
assumption, the free drug C and total target Rtot can be
computed from the expressions below:

C ¼ KmCtot

Km þ R
and Rtot ¼ 1þ Ctot

Km þ R

� �
R;

but are under- and over-predicted, respectively, for small t.
Unlike the cases of the Michaelis-Menten and Qss

models, assuming constant Rtot will not produce any further
simplifications for the two models above, since the
differential equations for R become invalid, although
eliminating R in the equations for the free and total drug

concentration generates the corresponding cases of the
Michaelis-Menten and Qss models, respectively.

Woo et al. (2) developed a general TMD model of
recombinant human erythropoietin to study the
pharmacokinetic-pharmacodynamic relationships in rats,
monkeys, and human at various doses. For the general
TMD model in rats, simulation at a low dose of 10 IU/kg
shows that the two models above both perform well as
approximations (Fig. 4). There are cases that the two
models appear to perform not so well as the Qss model (e.g.,
the model in (24), plot not shown).

In certain situations, an assumption broader than the
quasi-steady state can bemade as the basis for simplification of
the general TMD model. Consider the equation for the free
drug and target, and the complex:

R � C ¼ kM � aR� bC þ g: ð25Þ
If κ is KD (or Km), and α, β, γ=0 this equation becomes the
rapid binding (or Qss) assumption. If κ, β=0, α = kdeg/kon,
and γ = ksyn/kon, Gibiansky and Gibiansky (28) derived a
simplification for the irreversible binding model (koff=0) after
replacing Eq. 6 by the difference of the Eqs. 4 and 6.
If κ, β=0, α = Km, and γ = Vmax/kon for some positive
constant Vmax (not necessarily equal to kmetRtot), then the
Eqs. 6 and 5 can be written as an ODE system of C and
M. This ODE system was briefly discussed by Mager and
Jusko in (1). The solution, as a simplification of the general
TMD model, is not equivalent to those from the rapid

Fig. 4 Predicted time-
concentration profiles of recombi-
nant human erythropoietin in rats
after a bolus i.v. injection of
10 IU/kg. Black solid line: general
TMD model; turquoise long-dashed
line (Qss 2): two-compartment
version of the model defined in
Eqs. 21 and 22; and red short-
dashed line (Qss 3): 2-compartment
version of the model defined in
Eqs. 23 and 24. Parameter values
from Woo et al. (2).
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binding and Qss assumptions but, interestingly, identical to a
model of the central, peripheral, and receptor compartments
with nonlinear (or Michaelis-Menten) “distribution” from the
central to receptor compartment and linear elimination from
both compartments. The condition (25) implies that γ cannot
be too small (i.e., γ < 0 and |γ| too large), and other
necessary conditions may also be identified. With (25),
simplifications to the general TMD model, defined by the
four systems of ODEs, can be attempted in a way similar to
the rapid binding or Qss approximation.

There are other ways of simplifying the general TMD
model. For example, Hayashi et al. proposed a binding
model for the population pharmacokinetics and pharma-
codynamics of omalizumab, a humanized IgG1 that binds
to human IgE as the target and is used to treat moderate to
severe persistent allergic asthma (9). The model allowed for
different distributional space of the complex from those of
omalizumab and IgE. The differential equations for the
free drug and IgE, although not given, can be expressed
with the usual terms in (6) and (4) after proper scaling by
the volumes of distribution for the drug (or target) and the
complex. Besides this difference in volume parameters,
other aspects of their model are the same as in the rapid
binding or Qss model.

Approximations

Although a simplification of the general TMD model can
be derived with a broad steady-state assumption such as
(25), requirements need to be identified to ensure its
appropriateness as an approximation. Seeking the require-
ments is an entirely different, and often difficult, task from
the easy derivation of a simplified model. We propose that
the appropriateness of a simplification with the require-
ments met should be judged under the following criteria,
analogous to comparison of two models representing the
same biological system:

& The simplified model has all parameters corresponding
to the general TMD model (e.g., Vmax in the Michaelis-
Menten model vs. kmetRtot from “Michaelis-Menten
Model”).

& The simplified model is asymptotically well-behaved.
Namely, as the requirements become more stringent,
the distance between the two models becomes smaller
in pre-specified regions. Here the distance between the
two model functions (or vectors) f (t) and g(t) is defined
by, for example, maxt�t0 fðtÞ � gðtÞj j with τ0>0 an
arbitrarily fixed constant. This implies that the
concentration-time profiles of the two models are close if
their corresponding parameters are close (e.g., between
Vmax and kmetRtot).

& Finally, fitting the simplified model to data produced
from the general TMD model within the specified
parameter range captures parameter information.
Namely, as data become more informative the param-
eters of the simplified model approach those of the
general TMD model. This implies that if the
concentration-time profiles of the two models are close
then the corresponding parameters are close.

Thus, under the criteria a simplified model is not appropriate
if its concentration-time profiles are similar to those of the
general TMD model, but corresponding parameters are not.
Suitable requirements for an appropriate simplification
should prevent this from occurring.

In the case of constant total target Rtot we derive require-
ments that, when satisfied, support the Michaelis-Menten and
Qss models as suitable approximations of the general TMD
model, and we show this using a scaling approach from
singular perturbation theory (17,18). For ease of derivation,
we consider first in “Michaelis-Menten Model”and “Quasi-
Steady-State Model” a simple one-compartment model
(kpt=ktp=0) and assume the case that the drug is only
exogenously administered as a bolus injection. Thus,
C(0)=C0>0 and I(t)=0. We describe necessary changes to
the requirements in “Others” for the cases of a two-
compartment model with more general drug input. The
scaling approach requires the selection of two time scales that
correspond to the fast phase of mainly bind-ing actions
(Tf ) and the slow quasi-steady state (Ts). A change of variables
of the ODE system defining the (simplified) general TMD
model leads to a scaled dimensionless system containing a
small parameter ε = Tf/Ts. Setting ε to zero yields a reduced
or degenerate system that is equivalent to a simplification. A
theorem by Tikhonov (see (16), for example) states that under
certain regularity conditions the solution to the original scaled
ODE system corresponding to the general TMD model
converges to the solution to the degenerate scaled system as ε
goes to 0. The regularity conditions stipulate in our cases that
the partial derivative with respect to M of the right-hand side
of the equation for the complex is negative when the Qss
assumption is satisfied. For both Michaelis-Menten and Qss
models, the regularity conditions can be easily verified; thus,
the scaled simplification is the limit, as ε approaches zero, of
the scaled system of the general TMD model. This implies
that in the original scale the simplified model is asymptotically
equal to the general TMD model for a small ε.

The time scales Tf and Ts, and thus ε, depend on the
system and pharmacokinetic parameters in the model. For the
approximation to be widely applicable, the above conver-
gence of limit should be in a uniform sense with respect to all
parameters in the equation in an interval [τ0, ∞), where τ0 is
any positive constant fixed a priori. This can be done by
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choosing time scales in such a way that the coefficients of the
scaled equations have upper bounds independent of the
parameters, so long as ε is required to be small, and that the
regularity condition is satisfied at all parameter values in a
compact (i.e., closed and bounded) set, defined by parameter
upper bounds. Without the uniform convergence, it is possible
that ε from a particular scaling approach may tend to 0 but
the concentration-time profiles of the general TMD model do
not become close to those of a simplification because of
changes in parameters not defined in ε.

The small parameter ε with its uniform sense can serve as
a measure of the overall closeness of the simplified model to
the general TMD model, i.e., for concentrations of both free
drug C and complexM. With the requirement on ε (<1), it is
possible to estimate the error of the approximation using a
Tayler-series-like expansion with respect to ε, and the
magnitude of the error should also be in the order of ε.

Michaelis-Menten Model

Under the assumptions specified above, the general TMD
model defined by (10) and (11) simplifies to

dC

dt
¼ �konðRtot �MÞC þ koffM � keC ; Cð0Þ ¼ C0

ð26Þ

dM

dt
¼ konðRtot �MÞC � ðkoff þ kmetÞM : Mð0Þ ¼ 0

ð27Þ
At initial time t when binding is the dominant activity, C ≈ C0.
Hence, an approximate solution to (27) can be obtained
by solving

dM

dt
¼ konðRtot �MÞC0 � ðkoff þ kmetÞM ; Mð0Þ ¼ 0

ð28Þ
which gives

M � M0½1� expð�konðKm þ C0ÞtÞ�; where M0 ¼ RtotC0

Km þ C0
:

ð29Þ
The exponential form of the solution in Eq. 29 suggests
that we define the fast time scale Tf to be ½konðKm þ C0Þ��1.
When t is large at the slow quasi-steady state, replacing
Eq. 27 with the Qss assumption (the first formula in (13))
and thus eliminating M in Eq. 26 give

dC

dt
¼ � kmetRtotC

Km þ C
� keC ; Cð0Þ ¼ C0 ð30Þ

0 ¼ kon Rtot �Mð ÞC � koff þ kmetð ÞM : ð31Þ

Equation 30 defines the one-compartment Michaelis-
Menten model, the same as (16) with I(t) there equal to 0.
The model expression here gives also the rationale for
choosing slow time scales to be reciprocals of the maximum
elimination rate of the free drug. One such choice is
therefore Ts ¼ ke þ konRtotð Þ�1. With this reasoning, we
now define other scaling constants for this simple case of the
general TMD model. Let

" ¼ Tf

Ts

¼ ke=kon þ Rtot

Km þ C0
ð32Þ

andmake the following change of variables x = C/C0, y =M/M0

where M0 is given in (29), and t ¼ Ts
�1t. Then, Eqs. 26 and

27 can be written as

dx

dt
¼ �x þ mð1� lÞdyþ ldxy; xð0Þ ¼ 1

ð33Þ

"
dy

dt
¼ x � ð1� lÞy� lxy; yð0Þ ¼ 0 ð34Þ

where

m ¼ KD

Km
; l ¼ C0

Km þ C0
; and d ¼ Rtot

ke=kon þ Rtot
: ð35Þ

Note that 0≤μ≤1, 0<λ<1, and 0<δ≤1. From Tihonov’s
theorem (see (16)), as ε → 0 the solution to (33) and (34)
converges to the solution to the degenerate system that
consists of Eq. 33 and the algebraic equation

0 ¼ x � 1� lð Þy� lxy; ð36Þ
if 1 − λ + λx is positive and uniformly bounded away from
0 or, equivalently, ðKm þ CÞ=ðKm þ C0Þ � t0 > 0, where
τ0 is a constant and independent of all parameters. This
condition is easily satisfied if Km is not too small relative to
C0. Since the ODE system of (33) and (34) corresponds to
that of (26) and (27), and (33) and (36) to (30) and (31), it
follows that the Michaelis-Menten model approximates the
general TMD model if ε is small.

Various simulation examples in Gibiansky et al. (13) and
Peletier and Gabrielsson (14) gave results consistent with the
above conclusion. In particular, the higher the initial free
drug concentration C0, the better the Michaelis-Menten
model as an approximation to the general TMD model.
Figure 5 is a simulation example for model comparison with
the parameters from (14): ke=0.1, koff = kmet=1, kon=1, and
Rtot=1. The concentration-time profiles of the free drug and
complex are displayed for the general TMD model and its
approximations: the Michaelis-Menten, Qss, and rapid
binding models. The alternative Michaelis-Menten model
with KD replacing Km is also included. Among the initial
concentrations of 0.1, 1, 10, and 100 used in (14), C0=0.1
and 10 are selected. At C0=10 the free drug concentration is
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quite large relative to the target, and ε=0.09 from Eq. 32,
indicating a good approximation of the Michaelis-Menten
model. At C0=0.1, the Michaelis-Menten model (ε=0.52)
starts to be visibly worse, but the Qss model is still a
reasonable approximation.

Peletier and Gabrielsson analyzed the dynamic behavior
of the TMD model for various parameter ranges and
illustrated their results with simulation examples (14).
There, a different yet more intuitive choice of change of
variables was made, and with the choice a more customary
small parameter that is the ratio of the total target and free
drug concentrations Rtot/C0 (called μ in Appendix C.1 of
(14)) was selected. The authors reasoned geometrically that
the Michaelis-Menten model approximates the general
TMD model well for small Rtot/C0 when other parameters
are fixed. By contrast, " ¼ ke=kon þ Rtotð Þ= Km þ C0ð Þ from
our scaling choice shows that the initial free concentration C0
does not have to be large relative to the total target Rtot for the
Michaelis-Menten model to be close to the general TMD
model. A simulation example in (13) (Case 9 with parameters
ke=0.01, kon=0.0001, koff=0.1, kmet=3, Rtot=1000, and
C0=200) supports this (Fig. 6, upper panels). In the figure
the profiles of the Michaelis-Menten model are not distin-
guishable from the general TMD model, but the small
parameter value of ε is 5, if defined with Rtot/C0, but only
0.035 from the definition in (32). In this example with a small
binding rate, the disposition of the free drug is unsaturated

and essentially linear with the elimination rate equal to
ke + Vmax/Km. Again for comparison the QE model and the
alternative Michaelis-Menten model with KD replacing the
Michaelis-Menten constant Km (19) are displayed.

Quasi-Steady-State Model

As in “Michaelis-Menten Model” the general TMD model
defined by Eqs. 8 and 11 under the simplifying assumptions
becomes

dCtot

dt
¼ �keCtot � ðkmet � keÞM ; Ctotð0Þ ¼ C0 ð37Þ

dM

dt
¼ konðRtot �MÞðCtot �MÞ � ðkoff þ kmetÞM ; Mð0Þ ¼0

ð38Þ
and the Qss model becomes the joint solution to (37) and
the algebraic equation

0 ¼ kon Rtot �Mð Þ Ctot �Mð Þ � koff þ kmetð ÞM : ð39Þ

The consideration for the choice of time scales and changes of
variables are similar to the case of the Michaelis-Menten
model but leads to somewhat different results. At initial
fast binding time, the total drug concentration is
approximately the initial free drug concentration (Ctot ≈ C0),

0

0

Fig. 5 Simulated time-
concentration profiles of one-com-
partment TMD models. Upper
panels: C0=0.1; Lower panels:
C0=10. Black solid line: general
TMD model; blue long-dashed line:
Qss model; green short-dashed line:
rapid binding model; purple dot and
short-dashed line: Michaelis-Menten
model; and orange short- and
long-dashed line: Michaelis-Menten
model with KD as the Michaelis-
Menten constant. Parameter values
from Peletier and Gabrielsson (14):
ke=0.1, koff=kmet=1, kon=1,
and Rtot=1. All numbers are
in arbitrary units.
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and the second-order term of M in (38) can be ignored since
M2 ≪ M for small t. The solution to the resulting
linear differential equation approximates the solution to
(38) with Ctot = C0 and shows that the fast time
scale may be defined as Tf ¼ kon Km þ C0 þ Rtotð Þ½ ��1 .
Let Ts ¼ maxfke; kmet � kegð Þ�1 and

" ¼ Tf

Ts

¼ maxfke; kmet � keg
konðKm þ C0 þ RtotÞ : ð40Þ

C0 þ RtotÞ, and t ¼ T �1
s t. Then, Eqs. 37 and 38 can be

written as

dx

dt
¼ �qx þ ðq � nÞgy; xð0Þ ¼ 1 ð41Þ

"
dy

dt
¼ x � ð1� lþ glÞy� lð1� gÞxyþ lgð1� gÞy2; yð0Þ ¼ 0

ð42Þ
where

q ¼ ke

maxfke; kmet � keg ; n ¼ kmet

maxfke; kmet � keg ;

g ¼ Rtot

Km þ C0 þ Rtot
;

and λ is defined in (35). The dimensionless parameters
satisfy the conditions: 0≤θ≤1, 0≤ν≤2, and 0<γ<1. Again,
invoking the theorem of Tihonov (16) we conclude that the
solution to Eqs. 41 and 42 converges, as ε → 0, to the
solution to the degenerate system below, which corresponds
to Eqs. 37 and 39 defining the Qss model:

dx

dt
¼ �qx þ ðq � nÞgy; xð0Þ ¼ 1

0 ¼ x � 1� lþ glð Þy� l 1� gð Þxyþ lg 1� gð Þy2;
under some regularity condition imposed on the right-hand
side of (42). Consequently, the Qss model approximates the
general TMD model if ε in (40) is small. The regularity
condition requires that 1� lþ glþ l 1� gð Þx � 2lg 1� gð Þy
is positive and bounded away from 0 or, equivalently,
Km þ Rþ Cð Þ= Km þ C0 þ Rtotð Þ � t0 with a fixed constant
τ0>0. Note that this condition is met if Km is not too small
with respect to C0 and Rtot.

In the simulation example of Fig. 5, ε=0.29 at initial
concentration C0=0.1 (upper panels) and 0.07 at C0=10
(bottom panels) from Eq. 40, indicating a better approxima-
tion of the Qss model at C0=10. Although the small
parameters ε between the Michaelis-Menten and Qss models
in Eqs. 32 and 40 are not exactly comparable, the difference
in the expressions suggests greater utility of the Qss model as

Fig. 6 Simulated time-
concentration profiles of one-
compartment TMDmodels. Upper
panels: ke=0.01, kon=0.0001,
koff=0.1, kmet=3, Rtot=1000,
and C0=200. Parameter values
from Gibiansky et al. (13) (Case 9).
Lower panels: kon and Rtot
modified to be kon=0.01 and
Rtot=100; other parameters are
the same as in the example of the
upper panel; Black solid line:
general TMD model; blue long-
dashed line: Qss model; green
short-dashed line: rapid binding
model; purple dot and short-dashed
line: Michaelis-Menten model; and
orange short- and long-dashed line:
Michaelis-Menten model with KD
as the Michaelis-Menten constant.
All numbers are in arbitrary units.
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an approximation. In general, the Michaelis-Menten model
is a good approximation, if the total target Rtot is small
relative to Km + C0 from (32). This is not the case for the Qss
model, which has been demonstrated in applications and
simulations (see (13) for more simulation examples). Figure 5
is one more example—the Qss model is a better approxi-
mation for both free drug and complex at initial concentra-
tion C0=0.1. Nevertheless, the opposite could also be true.
For the simulation case in the upper panels of Fig. 6, assume
a more reasonable kon=0.01 and Rtot=100, comparable to
the initial free drug concentration of 200. The lower panels
in Fig. 6 shows that the Michaelis-Menten model is a better
approximation than the Qss model in this case. In the plot
for the free drug the Michaelis-Menten model is not
distinguishable from the general TMD model. Here the ε
from Eq. 32 is 0.20, which does not appear to be a good
indicator for the goodness of approximation.

Others

For the frequently applied cases of TMD models with
peripheral and depot compartments (thus I(t) ≠ 0), we
describe parameter requirements for simplifications to be
appropriate approximations. Again, assume constant total
target Rtot. The scaling approach can be easily adapted
from the case of a one-compartment model in “Michaelis-
Menten Model” and “Quasi-Steady-State Model”. The
scaling factor C0 for the free and total drug is replaced by

divided by the volume of distribution of the central compart-
ment (see Eq. 1). With this, the change of variables of the
complex, the free and total drug remains the same. For the
equation of the peripheral compartment (3), the scaled
dimensionless variable can be set as z = BT/C0. The fast time
scale need not be changed, but the slow time scale may be
chosen as Ts ¼ maxfkonRtot þ ke þ kpt; ktpg

� ��1
for the

Michaelis-Menten model and Ts ¼ maxfke þ kpt; kmet�
�

ke � kpt; ktp þ kptgÞ�1 for the Qss model. The small param-
eter for the derivative of the complex, defined as the ratio of
T
f and Ts, in the case of the Michaelis-Menten model is:

ð43Þ

ð44Þ

Therefore, under similar regularity conditions the
Michaelis-Menten and Qss models are suitable approx-
imations of the general TMD models if their respective
ε values are small.

Marathe et al. (29) used the same change of variables as in
Peletier and Gabrielsson (14) but different fast and slow time
scales that were the characteristic times of maximum free
target depletion due to binding k�1

on C
�1
0

� �
and of drug

elimination k�1
e

� �
. Consequently the small parameter is the

ratio " ¼ ke= konC0ð Þ. Simulations were conducted to support
the rapid binding model as a suitable approximation to the
general TMD model. It is interesting to compare their choice
of ε and the choice in (14) (ε = Rtot/C0) with ours. The
parameters in both ε definitions point to those that should be
included in the ε requirement and corroborate those in
Eqs. 43 and 44 (except for Km).

The TMD model of interferon-β1a studied in (1,5) is used
in “Methods” as an introductory example. The ε values of
4.07 and 0.15, calculated from Eqs. 43 and 44, indicate that
the Michaelis-Menten model should be a poor approximation
but the Qss model is perhaps reasonable. Another example
used in (1) to illustrate the utility of the general TMD model
was bosentan, an endothelin receptor antagonist for pulmo-
nary artery hypertension. Concentration data were collected
from healthy male subjects receiving 5-minute infusions of 10,
50, 250, 500, and 750 mg. At 250 mg, the ε value is 0.04 for
the Qss model and 0.16 for the Michaelis-Menten model.
Simulation shows that the rapid binding and Qss models
approximate the general TMD model quite well whereas the
Michaelis-Menten model does not (plots not shown). The
approximation of the Qss model is still reasonable at doses of
10 and 50 mg with ε=0.15 and 0.32, respectively. For the
rapid binding or Qss model, the concentration-time profiles
are close to those of the general TMD model over 24 h after
dose, except at the first hour. The Michaelis-Menten model is
again not a good approximation; the calculated ε values are
3.28 and 0.77 from (43).

The same scaling approach in “Approximations” can be
taken for drug-receptor binding occurring in the peripheral,
instead of the central, compartment. Under the Qss
assumption the ε parameters can be defined for the
Michaelis-Menten and Qss models as indicators for the
goodness of the approximation.

DISCUSSION

The current drug research and development effort has an
increased focus on biological compounds, for which TMD is
common and poses unique challenges. Understanding of the
TMD is beneficial for the investigation of dose-exposure-
response relationships, important for the selection of optimal
drug candidate and dose regimen. Models characterizing
TMD are, however, complicated with model parameters
often not identifiable because of data limitation. In this study
we have organized various simplifications of the general TMD
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C0 ¼ C0 þ B0 þ
R

t>0IðtÞdt, where B0 is the depot dose

" ¼ max fkonRtot þ ke þ kpt; ktpg
konðKm þ C0Þ ;

and in the case of the Qss model is

" ¼ max fke þ kpt; kmet � ke � kpt; ktp þ kptg
konðKm þ C0 þ RtotÞ :



model and shown that, in addition to assuming constant Rtot,
one common approach to simplifying the general TMD
model is to replace quite often the equation for the complex
by an algebraic one in the system of ODEs defining the
general TMD model. The rapid binding and Qss models are
examples of simplifications using this approach. The Qss
assumption sets the right-hand side of Eq. 5 for the complex
to 0 and leads naturally to a “small derivative” of the left-
hand side. With the Qss assumption, the four equivalent
ODE systems that define the same general TMD model
produce four non-equivalent simplifications including the
Michaelis-Menten and Qss models. Under some parameter
requirements, the Michaelis-Menten and Qss models are
appropriate approximations to the general TMD model
based on a scaling approach in singular perturbation theory.

Note that the Michaelis-Menten and Qss models, as
simplifications of the general TMD model, are not reductions
of it; namely, the solution to either simplified ODE system is
not a special case of the general TMD model with certain
parameter constraints satisfied, unlike the case of assuming
constant Rtot, a simplification when kmet = kdeg in the general
TMD model. Graphically, since the quasi-steady-state (or
rapid binding) assumption invalidates the ODE system for
the general TMD model, no concentration-time profiles
from the Michaelis-Menten or Qss model will coincide with
those from a general TMD model.

For simplifications of the general TMD model, although
we have presented the results in the setting of one-
compartment models, all conclusions are valid for two-
compartment models with necessary changes. Other exten-
sions of the results are also perceivable. By contrast, it is less
straightforward to extend the scaling method to identify
appropriate requirements for the simplifications to be close
to the general TMD model when, for example, Rtot is not
necessarily constant. Ideally the requirements under which
a simplification is close to the general TMD model needs to
be quantified. This, in turn, requires that we quantify the

“closeness” of a simplification to the general TMD model.
As a first attempt, we have defined ε via scaling approach
with its magnitude serving as crude guidance for goodness
of the approximation. Although ε within specified param-
eter ranges is uniform in that, as ε approaches 0, the
simplification approaches the general TMD model in a pre-
defined region, the quantity ε does not have a strict order
relationship with respect to the closeness of the approxima-
tion. There are indeed many questions remain unanswered.
Overall, the general TMD model proposed in (1) and
discussed here is itself a simplification of the complex
biological system. Competition with endogenous ligands for
a binding receptor (as a target) may be built further into the
system. Target storage that may replenish target degraded
or bound by the drug would be among the next factors to
consider. Appropriate simplifications may follow as a result
from models for these extensions of mechanisms.

As discussed, the pharmacokinetics of a biological
compound with TMD depends on the target and is not
always easy to characterize, especially when information of
the target is little. Therefore, the investigation of the TMD
behavior requires appropriate data that come from studies
of adequate designs. Unfortunately, study designs are often
not adequate at early learning stages of drug development
because of limited experience and knowledge. Consequent-
ly, the pharmacometrician who works with such limited
information may initially choose a simplified TMD (e.g.,
Michaelis-Menten) model. As more informative data
become available, more elaborate models can be attemp-
ted, and decisions have to be made to improve the initial or
early TMD models. The improvement could range from
keeping a parsimonious model that is minimally mechanis-
tic for only predictive purposes to including many mecha-
nistic components in a model at the risk of over-
parameterization in practice. It is for this kind of decisions
that we hope the current work is useful; i.e., with a better
understanding of various modifications and simplifications

Fig. 7 General target-mediated-
disposition model and its simplifica-
tions. Assumptions indicated by
arrow colors. Blue arrows: Qss
assumption; green arrows: rapid
binding assumption; red arrows:
constant Rtot assumption or
kmet=kdeg; and black arrows:
assumptions followed from the
Wagner equations (e.g., (19)).
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of the general TMD model, summarized in Fig. 7, it may
be less difficult a task for a pharmacometrician to strike a
proper balance by choosing an appropriately mechanistic
and, yet, appropriately parsimonious model for studying
compounds with TMD behavior.
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APPENDIX

The one-compartment Michaelis-Menten model with a
bolus injection and constant total target is a particularly
illustrative case for a simplification of the general TMD
model under the Qss assumption. We provide here more
details of the free drug C that can be expressed using a
special mathematical function and the complex M that can
be improved over the usual choice. We recommend the use
of the improved expression of M (Eq. 46) in modeling.

Inner and Outer Layers

From the terminology of singular perturbation theory, the free
drug C (≈ C0) and complex M given in (29) as a solution to
(28) are valid at the initial fast binding time and called the
inner layer, but the solution of C and M to (30) and (31) are
valid at the later quasi-steady state and called the outer layer.
If ke>0, Eq. 30 for the outer layer can be transformed to a
(transcendental) equation after integration

C

Km
1þ ke

ke þ kn

C

Km

� �kn=ke

¼ G0e
�ðkeþknÞt ; ð45Þ

where kn ¼ Vmax=Km and Vmax ¼ kmetRtot. The parameter kn
is the maximum nonlinear elimination rate constant for the
free drug in the Michaelis-Menten model. The constant
G0 ¼ G0 C0=Km; kn=keð Þ is equal to the left-hand side of the
above equation at t=0 and thus dependent on C0/Km and
kn/ke. If ke=0, then Vmax>0 (see the assumption of nontrivial
TMD models in “Methods”), and the integration of (30)
results in the limit of the above equation as ke→0:

C=Kmð ÞeC=Km ¼ G0e
�kn t :

Thus, C is equal to KmW G0e
�kn tð Þ at ke=0, where W is

the Lambert W-function (or omega function), which is
the inverse of f (x)=xex. As a generalization of W, if we
denote W(x; α) as the inverse of f x;að Þ ¼ x 1þ axð Þ1=a
then the free drug concentration C in (45) is approximately
KmW G0e

�keþknð Þt ; ke= ke þ knð Þ� �
for small ke.

Note that a consequence of making the Qss assumption
is M (0)=M0≠0 if M is the outer layer and given by the first
formula in (13), but the limit of the outer layer as t→0 is
the same as the inner layer in (29) as t→∞. Thus, an
improvement to both inner and outer layers as approx-
imations of the complex can be made. With a standard
matching technique, a total solution for M can be proposed
as the sum of the inner and outer layers minus the
overlapping term, which gives

M ¼ Rtot
C

Km þ C
� C0

Km þ C0
expð�konðKm þ C0ÞtÞ

� �
;

ð46Þ
where C is given in (45). Simulation examples in Figs. 5 and
6 show that the improvement corrects the over-estimation
of the complex at initial time. In all cases, for small t the
improved complex M overlaps completely with that of the
general TMD model (plots not shown).
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